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Are biological-relevant visual features 
constrained by training tasks?
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Are biological-relevant visual features 
constrained by architectures?
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4 What images strongly activate the 
canonical dimensions? 

Same architecture (ResNet)

Same training data (ImageNet)

DISTINCT tasks

106,889 features

DNNs learn canonical dimensions independent of training tasks.

Same task (object classification)

Same training data (ImageNet)

DISTINCT architectures

217,879 features

DNNs learn canonical dimensions independent of architectures.
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Are these effects driven by 
specific layers or models?

Representational similarities between deep 
neural networks (DNN) and brains have been 
attributed to shared optimization constraints1, 2.

However, DNNs with widely varied designs are 
all surprisingly similar to the brain3, 4, 5.

Do DNNs learn constraint-independent, 
“canonical” features?

Are these canonical dimensions also 
encoded in human visual cortex?

Takeaway

• Biologically relevant visual features are generically 

learnable and are largely independent of constraints on 
task or architecture.


• Suggests that core statistical principles across biological 
and artificial vision give rise to canonical representational 
dimensions.
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