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ABSTRACT

Do neural network models of vision learn brain-aligned representations because they share architec-
tural constraints and task objectives with biological vision or because they learn universal features of
natural image processing? We characterized the universality of hundreds of thousands of represen-
tational dimensions from visual neural networks with varied construction. We found that networks
with varied architectures and task objectives learn to represent natural images using a shared set of
latent dimensions, despite appearing highly distinct at a surface level. Next, by comparing these
networks with human brain representations measured with fMRI, we found that the most brain-aligned
representations in neural networks are those that are universal and independent of a network’s specific
characteristics. Remarkably, each network can be reduced to fewer than ten of its most universal
dimensions with little impact on its representational similarity to the human brain. These results
suggest that the underlying similarities between artificial and biological vision are primarily governed
by a core set of universal image representations that are convergently learned by diverse systems.

1 Introduction

Deep neural networks have a remarkable ability to simulate the representations of biological vision [15, 30, 5, 8].
However, due to their immense complexity, the principles that govern the brain-aligned representations of deep networks
remain poorly understood.

A leading approach interprets neural network representations in terms of their architectures and task objectives, which are
thought to function as key constraints on a network’s learned representations [29, 24, 3, 7, 14]. However, an alternative
possibility is that the brain-aligned representations of neural networks are not contingent on specific optimization
constraints but instead reflect universal aspects of natural image representation that emerge in diverse systems [10, 13,
8].

Here we sought to determine if the representations that neural networks share with human vision are universal across
networks. We examined over 200,000 dimensions of natural image representation in deep neural networks with varied
designs. Our analyses revealed the existence of universal dimensions that are shared across networks and emerge
under highly varied optimization conditions. Universal dimensions were observed across the full depth of network
layers and across a variety of architectures and task objectives. Visualizations of these dimensions show that they
do not simply encode low-level image statistics but also higher-level semantic properties. We next compared these
dimensions to the representations of the human brain measured with fMRI, and we found that universal dimensions are
highly brain-aligned and underlie conventional measures of representational similarity between neural networks and
visual cortex. Together, these findings demonstrate the striking degree to which the shared properties of artificial and
biological vision correspond to general-purpose representations that have little do to with the details of a network’s
architecture or task objective.

2 Results

2.1 Assessing universality and brain similarity

We sought to compare two fundamental quantities of representational dimensions in neural networks: 1) their universality
across varied networks and 2) their similarity to human brain representations. Here we briefly describe how we computed
these two quantities. A more detailed description is provided in the Methods.
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Figure 1: Overview of method for computing universality and brain similarity of network dimensions. (a)
Four sets of deep neural networks were analyzed, including three sets of trained models that varied in either their
random initializations, architectures, or task objectives and one set of untrained models with different initializations.
(b) Universality and brain similarity were defined as the average prediction accuracy of a latent dimension from a
target network when using the activations of other networks or the fMRI activations of the human brain as predictors.
Dimensions that can be consistently predicted from the representations of other networks have high universality.
Dimensions that can be consistently predicted from the representations of the human brain have high brain similarity.

As illustrated in Figure 1, we characterized universality and brain similarity by examining the activations of networks
and the human brain to a large and diverse set of natural images from the Microsoft Common Objects in Context
(COCO) image database [20]. For each latent dimension d of a network’s activations (i.e., each principal component),
we computed a universality metric by obtaining its average predictability from the activations of m other networks:

Universalityd = avg(rd,1, rd,2, . . . , rd,m) , (1)

where avg(·) is the average and rd,m is the prediction accuracy of a cross-validated linear regression with dimension d
as the predictand and network m as the predictor. We performed these analyses on the principal components (PCs)
of a network’s activations so that each dimension d is sampled from an orthogonal basis rather than from a set of
potentially redundant neurons. The motivation for this metric is to quantify the average degree to which a dimension in
one network is shared with the representations of other networks. Dimensions that are shared across all networks will
have universality scores close to 1, while dimensions that only emerge under specific network configurations will have
universality scores close to 0.

For each dimension d of a network’s activations, we also computed a brain-similarity metric by obtaining its average
predictability from the fMRI activations of n human brains:

Brain similarityd = avg(rd,1, rd,2, . . . , rd,n) , (2)

where avg(·) is the average and rd,n is the prediction accuracy of a cross-validated linear regression with dimension
d as the predictand and subject n as the predictor. Here the motivation is to quantify the average degree to which a
network dimension is shared with the representations of the human visual cortex. Dimensions that are shared between
networks and humans will have brain similarity scores close to 1, while dimensions that are not shared with humans
will have brain similarity scores close to 0.

We examined the universality of representational dimensions among several sets of vision networks that varied in their
random initializations, architectures, or task objectives. The specific networks used for these analyses are described in
4.2.1 and listed in Tables S1 and S2. To assess brain similarity, we compared network representations with image-evoked
fMRI responses from the Natural Scenes Dataset (NSD) [1], which is the largest existing fMRI dataset of natural scene
perception in the human brain. We focused on a portion of this dataset that contains fMRI responses to 872 images
shown to each of eight participants. This dataset is ideally suited for assessing whether the dimensions of natural image
representations in neural networks can also be found in the representations of the human brain. For our main analyses,
we focused on a general region of interest that included all voxels in visual cortex whose activity was modulated by the
presentation of visual stimuli (Fig. 1).

2.2 Universality across initialization weights
We used universality and brain similarity to address a central question: Are there universal dimensions of natural image
representation that are shared by neural networks and humans? We first performed these analyses for a setting in
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which we naturally expected to find shared network dimensions. Specifically, we examined universality among a set
of networks that were initialized with different random weights but were otherwise identical (i.e., same architecture,
task, and training data). These networks were 20 ResNet-18 architectures trained on image classification using the
Tiny ImageNet dataset [11, 26, 19]. For each dimension in each network layer, we computed its universality using the
other networks as predictors. We examined network layers spanning the full range of model depth, except for the final
classification layer. We iterated this analysis over a total of 36,596 dimensions across all networks.

As shown in the left panel of Figure 2, we observed universality scores spanning the full range from 0 to 1, with a
high density of points around 0, indicating that most dimensions are idiosyncratic. The high density of idiosyncratic
dimensions could reflect representations present at initialization that remain largely unchanged during training, or
they could reflect unique representational strategies learned by specific network instances. In contrast, the universal
dimensions at the other end of the scale reflect convergent representations that reliably emerge in all networks despite
differences in their starting points. Notably, these universal dimensions account for a relatively small subset of the total
number of network dimensions, as illustrated by the lower density of points at the high end of the universality axis.

We next compared these network dimensions to human brain representations, and we found that the universal dimensions
exhibit exceptionally strong brain similarity scores (Fig. 2). This demonstrates that among the many network dimensions
examined here, it is only those that are invariably learned by networks with different initial conditions that are also
strongly shared with the representations of the human visual system.

In follow-up analyses, we found that the trend in Figure 2 was consistently observed in each network layer (Fig. 3),
each individual network (Fig. S1), each individual fMRI subject (Fig. S2), and in multiple regions of interest in visual
cortex (Fig. S3). The observation of this effect in all network layers shows that universality is not restricted to low-level
features in early layers but instead extends across the full depth of the network. We emphasize that the universality
and brain similarity metrics in our analysis pipeline are not guaranteed to be related to one another. Using simulated
data, we can trivially obtain a range of universality and brain similarity scores while observing no positive relationship
between these two metrics (Fig. S4). Together, these findings show that among a preponderance of idiosyncratic
network dimensions, there exists a smaller subset of highly convergent dimensions that are learned by different network
instances and are shared with human vision.

Figure 2: Universality and brain similarity of network dimensions. Universality and brain similarity were computed
for representational dimensions in four sets of deep neural networks. These included three sets of trained networks
with varied initializations, architectures, and task objectives and one set of untrained networks. These metrics were
computed for the principal components of network activations extracted from the sampled layers of each network.
Universality scores reflect the degree to which a representational dimension is shared across all networks in a set, and
brain similarity scores reflect the degree to which a representational dimension is shared with the human visual system.
Measurements of human visual cortex activity were obtained from the Natural Scenes fMRI Dataset using a general
region of interest that included all visually responsive voxels [1]. Universality and brain similarity scores are plotted for
all analyzed network dimensions. These plots show the density of dimensions on a logarithmic scale, with densities
computed using kernel density estimation. The orange dots show the mean universality and brain similarity scores for
equally sized quantiles of 100 dimensions along the x-axis. These plots show similar trends for all three sets of trained
models (the first three plots on the left). Specifically, they exhibit a high density of points near the origin, showing
that most dimensions are idiosyncratic to each network and are not shared with the human brain. However, they also
contain a subset of dimensions with exceptionally high universality and brain similarity scores. These latter dimensions
correspond to representations that are consistently learned by all networks within a set and are also strongly shared
with the visual representations of the human brain. In contrast, untrained networks (right panel) can also have shared
dimensions, but these shared untrained dimensions have relatively weak brain similarity scores.
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Figure 3: Universality and brain similarity across network layers. These plots show the universality and brain
similarity scores for individual network layers spanning the full depth of each network. Four sets of deep neural
networks were examined, including three sets of trained networks with varied initializations, architectures, and tasks and
one set of untrained networks. The analyses are the same as in Figure 2, but here the results are plotted as the average
values for individual layers, which are labeled according to their relative depth. Further details of these network layers
are included in the supplement file model_layer.csv. Average universality and brain similarity scores were computed
for equally sized quantiles of 100 dimensions along the x-axis for each layer. Panels on the sides of each plot show
the density of dimensions on a logarithmic scale computed using kernel density estimation. As in Figure 2, these
plots exhibit a high density of points near the origin, which means that across all sampled layers, most dimensions are
idiosyncratic and are not shared with the human brain. However, the three sets of trained networks (first three plots on
the left) also contain a subset of dimensions at the right end of each plot that have exceptionally high universality and
brain similarity scores. Importantly, these layer-wise plots show that a consistent trend is observed across all sampled
layers and that universal dimensions are not restricted to early network layers.

2.3 Universality across architectures and tasks

We next sought to determine if universal dimensions can be detected among networks with varied architectures and tasks.
To this end, we quantified universality and brain similarity for two sets of models. The first was a set of models with
different architectures but trained on the same task. Specifically, we examined 19 networks trained to perform ImageNet
classification using varied architectures, including convolutional models, vision transformers, and MLP-Mixers. The
second was a set of 9 models with the same architecture (ResNet-50) but trained on different tasks. The tasks included
object classification and a variety of self-supervised tasks, such as contrastive learning, identifying image rotations, and
solving jigsaw puzzles. For all models, we examined layers spanning the full network depth, except for the final layer.
Further details about the models can be found in Tables S1 and S2. In total, we examined 149,743 dimensions in the set
of varied architectures and 43,132 dimensions in the set of varied tasks.

The findings for these two sets of models were surprisingly consistent with those observed for models with varied
initializations (Fig. 2). We again found that most dimensions are idiosyncratic (i.e., specific to a model) and not shared
with the brain, as shown by the high density of points near the origin. Again, we also found that a subset of dimensions
exhibit exceptionally high scores on both the universality and brain similarity metrics. These latter dimensions
correspond to representations that reliably emerge across many models despite variations in their architectures and the
tasks that they were trained to perform. Furthermore, the generality of these representations extends beyond artificial
vision, as they are also strongly shared with the representations of the human visual system. Remarkably, these findings
are highly similar when considering networks that vary in either architectures or task objectives. This suggests that the
underlying similarities among the representations of these networks—as well as their similarities to human vision—are
only weakly influenced by architecture and task but instead reflect highly general properties of image representations in
deep networks.

We also note that there is a striking paucity of points in the upper left quadrant of the plots in Figure 2. Points in
this quadrant would correspond to representations shared with the brain but learned only by networks with specific
optimization constraints—namely, specific architectures or tasks. The lack of points in this quadrant suggests that the
details of architectures and tasks have a relatively minor role in shaping the brain-aligned representations of neural
networks.

In follow-up analyses, we again found that these results are highly robust—they were observed in each network layer
(Fig. 3), each individual network (Fig. S1), each individual fMRI subject (Fig. S2), and in multiple regions of interest
in visual cortex (Fig. S3). Together, these findings reveal the remarkable degree to which vision systems with varied
architectures and task objectives can nonetheless converge on a set of general-purpose representations that are shared
not only across models but also between artificial and biological vision.
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2.4 Universality across untrained networks
Our analyses thus far have focused on sets of trained neural networks, and we have interpreted the dimensions in the
upper right quadrant of the plots in Figure 2 as learned representations. However, we expect that shared dimensions can
also be found among sets of untrained models due to statistical regularities in the activations that natural images elicit
in networks with random filters. We thus wondered whether our findings for the trained networks could be explained
by the statistics of image activations alone—without any need for learning—or whether they diverge from the trends
observed in randomly initialized networks. To address this question, we examined 20 ResNet-18 architectures that were
randomly initialized with the same seeds as the trained models presented in the left panel of Figure 2. We followed the
same procedures as in the preceding analyses. For each dimension in each network layer, we computed its universality
using the other networks as predictors, and we iterated this analysis over a total of 9,413 dimensions from all networks.

These analyses showed that, as expected, there is a wide range of universality scores for the untrained network
dimensions, with some dimensions that are found in all networks (Fig. 2). These universal dimensions of untrained
networks correspond to representations that consistently emerge when propagating natural images through a hierarchy
of random convolutional filters. They are thus due to image statistics alone and not learned representational properties.
However, importantly, the relationship between universality and brain similarity diverges from the relationship that
was observed for trained models. Specifically, for untrained networks, we observe a shallow and approximately linear
relationship between universality and brain similarity, whereas for trained networks, brain similarity exhibits a sharp
nonlinear increase at the high end of the universality axis. As a result, the shared dimensions of untrained networks
have substantially lower brain similarity scores than the shared dimensions of trained networks. As in the previous sets
of analyses, we again found that these results were consistent in each network layer (Fig. 3), each individual network
(Fig. S1), each individual fMRI subject (Fig. S2), and in multiple regions of interest in visual cortex (Fig. S3). In sum,
when comparing the trends for trained and untrained networks, the findings demonstrate that the universal dimensions
of trained networks reflect learned representational properties that cannot be explained by image statistics and random
features alone.

2.5 Universality and the visual hierarchy
Previous work has shown that in many neural networks trained on natural images, the first layer contains general-purpose
V1-like filters tuned to orientation, frequency, and color, whereas subsequent layers contain filters that appear to be
increasingly specialized [18, 31]. This suggests the possibility that universality may only be prominent in early network
layers and then rapidly diminish across the network hierarchy. To address this possibility, we examined the universality
and brain similarity of network representations in individual layers along the full depth of each network. Figure
3 shows the results of these analyses for all sets of models. Across all sets of trained models, we found relatively
similar distributions of universality scores at all sampled layers, with highly universal dimensions detected even in
the deepest layers that we examined. Furthermore, these analyses show that the relationship between universality and
brain similarity is consistent across layers. Thus, these findings suggest that at all levels of network depth, we can find
general-purpose representations that are reliably learned by diverse networks and are strongly shared with the human
brain.

2.6 Universal dimensions and high-level image properties
The findings from the previous section show that universal dimensions are not restricted to early network layers. However,
these findings do not directly address the question of whether the shared dimensions of later layers represent high-level
semantic properties or low-level image statistics, such as luminance gradients and spatial frequency distributions. To
address this question, we performed exploratory visualization analyses of the universal dimensions in later network
layers. Specifically, we examined the penultimate layer of the models from the varied-task set, as shown in the middle
right panel of Figure 2. We focused on the varied-task set because the models in this set have the same ResNet-50
architecture, which allowed us to examine representations from the same targeted layer in all networks. We concatenated
the dimensions from the penultimate layer across all networks and ranked their universality scores. We then selected
the top 100 dimensions with the highest universality scores and visualized the image representations of these 100
dimensions in a 2D space using uniform manifold approximation and projection (UMAP) [21].

As shown in Figure 4, these representations exhibit rich high-level organization, with images grouped into clusters
of semantically related items, such as people, sports, animals, and food. For comparison, we also generated UMAP
embeddings of the 100 dimensions with the lowest universality scores from this layer. We found that these idiosyncratic
dimensions exhibit no clear semantic organization (Fig. S5). We also generated UMAP embeddings of the top 100
universal dimensions in the penultimate layer of the untrained-network set, which is shown in the rightmost panel of
Figure 2. In contrast to the trained networks, the universal dimensions of untrained networks emphasize prominent
low-level features, such as coarse luminance gradients (Fig. S6). Together, these visualization analyses show that the
universal representations of high-level layers in trained networks encode high-level image properties that group images
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into semantically meaningful clusters. This suggests that there are common organizing principles of high-level image
semantics that are universally learned.

Figure 4: Two-dimensional visualization of high-level universal representations. Image activations for the 100
most universal dimensions from a high-level network layer were embedded in two dimensions using uniform manifold
approximation and projection. Specifically, image activations were obtained for the top 100 dimensions with the highest
universality scores in the penultimate layer from the set of models trained on different tasks. This plot shows that
universal dimensions do not simply reflect low-level image features but instead capture high-level properties that group
images into semantically related clusters, some of which are highlighted here, including animals, food, sports, people,
and vehicles. In contrast, Figure S5 shows a visualization of the 100 least universal dimensions from the same network
layer, and it shows no clear semantic organization.

2.7 Universal dimensions and representational similarity analysis
Our findings thus far show that the universal dimensions of networks can be strongly predicted from human brain
representations. We next sought to evaluate the effect of universal dimensions on a conventional representational
similarity analysis (RSA). Specifically, we performed a targeted analysis to determine if universal dimensions drive
the representational similarity scores obtained from comparisons of neural networks with visual cortex. To do so,
we conducted a standard RSA on networks with representations reduced to low-dimensional subspaces of their most
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universal dimensions. We performed this analysis for all sets of networks examined in Figure 2. Following the RSA
procedures in [5], we split the stimuli into training and test sets. We selected the best-performing layer from each
network on the training set and computed the final RSA score for the selected layers on the test set. We then reduced each
network to a subset of its most universal dimensions and computed RSA scores for these reduced model representations.
We analyzed the same general region of interest in visual cortex as in the preceding analyses. We found that even when
the networks are reduced to just ten or five universal dimensions, their RSA scores exhibit little or no decrease—in fact,
for all three sets of trained networks, they slightly improve (Fig. 5). Similar results were observed when performing
these analyses in individual subjects (Fig. S7) and in other regions of interest (Fig. S8). These findings suggest that
the representational similarities between neural networks and visual cortex are largely driven by subspaces of network
dimensions that are universal.

Figure 5: Universal dimensions underlie the results of conventional representational similarity analyses Represen-
tational similarity analysis (RSA) was used to compare the representations of neural networks and visual cortex. These
analyses were performed using the same general region of interest in visual cortex and the same sets of neural networks
as in Figures 2 and 3. Representational dissimilarity matrices (RDMs) were created by calculating Pearson correlation
distances for pairwise comparisons of image representations within each network and each fMRI subject. RSA scores
were obtained by calculating the Spearman correlation between the RDMs for a network and an fMRI subject. These
RSA scores were averaged across subjects. For each network, the best-performing layer was selected using a set of
training data, and a final RSA score was computed on held-out test data. These analyses show the results of RSA for
networks whose representations were either intact or reduced to subspaces of their top ten or five universal dimensions.
In these plots, each dot is a network, and lines connect different versions of a network containing either all, ten, or five
dimensions. The violin plots show distributions of RSA scores across networks. Even after drastically reducing the
networks to just ten or five universal dimensions, the RSA scores exhibit little or no decrease—in fact, for all three
sets of trained networks, the RSA scores slightly improve. These results demonstrate that conventional measures of
representational similarity between neural networks and visual cortex are largely driven by the subspaces of universal
dimensions contained within each network. Similar trends were observed within each individual subject and in other
regions of interest, as shown in Figures S7 and S8.

3 Discussion
Our work reveals universal dimensions of natural image representation that are learned by artificial vision systems
and are shared with the human brain. These dimensions emerge in diverse neural networks despite variation in their
architectures and task objectives. The role of these dimensions in vision appears to be general-purpose—they are
not specialized for any single task but instead support many downstream objectives. Universal representations are
found at all levels of visual processing in deep networks, from low-level image properties in early layers to high-level
semantics in late layers. Together, these findings suggest that machines and humans share a set of general-purpose
visual representations that can be learned under highly varied conditions.

Deep learning is now the standard framework for computational modeling in neuroscience, and many previous efforts
have sought to understand these deep learning models in terms of their specialization: that is, what objectives they are
specialized for, and what specific network characteristics underlie their similarities to the brain [29, 24, 3, 7, 14]. Our
work views the representations of deep networks from a different perspective. Rather than searching for specific model
characteristics that might be associated with stronger alignment with the brain, we sought to discover the elements of
network representations that are instead invariant across models. Using this approach, we found that crucial aspects
of deep network representations—those that are most strongly shared with the human brain—are, to a remarkable
degree, independent of the network characteristics that many previous studies have emphasized. The invariance of these
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representations implies that they are not primarily governed by the details of a network’s architecture or task objective
but instead by more general principles of natural image representation in deep vision systems [10, 13].

Our findings suggest several exciting directions for future work. First, our approach could be extended beyond vision
models to examine the representational dimensions that are shared across vision and language. Previous work has
shown that language-model embeddings of object names and scene captions are predictive of image representations
in high-level visual cortex [4, 2, 6]. An open question is whether networks trained on language data alone learn the
same universal dimensions of natural scene representation as image-trained networks. Second, our findings show that
universal dimensions emerge in networks despite differences in the tasks that the networks are optimized to perform.
This raises the intriguing possibility that universal dimensions could be hard-coded into networks at initialization,
potentially making the learning process faster and more data efficient. Third, while previous work has revealed
similarities between the visual cortex representations of humans and monkeys [17], we still know little about the degree
to which representational dimensions may be universal or species-specific across mammalian vision. This question
could be addressed by applying our approach to recordings of cortical responses to the same stimuli in different species.

In sum, our results show that the most brain-aligned representations of visual neural networks are universal and
independent of a network’s specific characteristics. What fundamental principles might explain the convergence of
networks to universal dimensions? Theories of efficient coding suggest that frequency- and orientation-tuned filters
are consistently observed in the first layer of vision systems because they constitute efficient bases that are adapted
to the statistics of natural images [22, 27]. It remains an open question whether this efficient-coding hypothesis can
be extended to a deep hierarchy, which could potentially explain universal dimensions as a consequence of optimal
image encoding. An alternative possibility is that deep networks learn shared representations of the true generative
factors in the visual world—e.g., the objects, materials, contexts, and optical phenomena that make a scene. This could
be the case if the optimal strategy for solving challenging tasks on natural stimuli is to learn the invariant properties
of reality [13], and it would suggest that the universal dimensions detected here reflect a shared internal model of the
visual environment in machines and humans.
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4 Methods
4.1 Natural Scenes Dataset
4.1.1 Stimuli and experimental design
The Natural Scenes Dataset (NSD) is a large-scale publicly available fMRI dataset on human vision that is described in
detail in a previous report [1]. Here we briefly review the key attributes of this dataset. The NSD study sourced color
natural scene stimuli from the Microsoft Common Objects in Context (COCO) database [20] and collected 7T fMRI
responses (1.8mm voxels, 1.6s TR) from eight adult subjects who viewed these stimuli while performing a continuous
recognition memory task, namely to respond if the presented image was seen before in the experiment. Each subject
viewed approximately 10,000 stimuli with three repetitions, though some subjects saw fewer stimuli because they did
not complete all scanning sessions. Among the stimuli, 872 "shared" images were viewed by all subjects at least once.
We used these shared images and the corresponding fMRI data for our main analyses.

4.1.2 Data preprocessing
We used the NSD single-trial betas, preprocessed in 1.8-mm volume space and denoised with the GLMdenoise
technique (version 3; betas_fithrf_GLMdenoiseRR). Subsequently, the betas were transformed to z-scores within
each individual scanning session, as recommended by the authors [1]. For all analyses, we used the averaged betas
across repetitions.

4.1.3 Regions of interest
Our main analyses focused on the nsdgeneral region of interest (ROI), which includes a large swath of visual cortex.
This ROI, as defined in the NSD study [1], contains all voxels that were reliably modulated by the presentation of visual
stimuli, comprising approximately 15,000 voxels in each subject. We also conducted follow-up analyses in smaller
ROIs, including the ventral, parietal, lateral streams, using the "streams" ROIs provided in the NSD dataset.

4.2 Deep neural networks
4.2.1 Model sets
We examined four sets of DNN models to probe the universality of representational features across different factors of
variation:

• Random seeds in trained models

• Architectures

• Task objectives

• Random seeds in untrained models.

The first set included 20 pretrained ResNet-18 models examined in a previous study of model hyperparameters [26].
These models were initialized with unique random seeds and trained on Tiny ImageNet [19]. We extracted features
from nine rectified linear unit (ReLU) layers that span the depth of the ResNet-18 architecture, except for the final
output layer. In total, we extracted 36,596 dimensions from this set.

The second set included 19 pretrained models with varied architectures, which included various convolutional networks,
transformers, and MLP-Mixers (Table S1). All were trained on ImageNet for object classification [25] and obtained
from the torchvision library [23, 28]. Given the variety of architectures in this set, the sampled layers included ReLU,
normalization, attention, multi-layer perceptron, and other model-specific operations. The sampled layers span the full
range of layer depth in each model (additional details are provided in Table S1). The complete list of these layers are
included in the supplement file model_layer.csv. A total of 149,743 dimensions were extracted from this set.

The third set included 9 pretrained ResNet-50 models from the torchvision library [23] and the VISSL model zoo
[9]. These models were trained to perform a variety of tasks on ImageNet images [25] (Table S2). A total of 43,132
dimensions were extracted from all ReLU layers, except for the final output layer.

The fourth set included 20 untrained ResNet-18 models [11] with different random weights, which were created using
Kaiming normal initialization [12]. Each model had a unique random seed. A total of 9,413 dimensions were extracted
from all ReLU layers. Note that the lower number of dimensions here relative to the set of trained models with different
random seeds is due to the low-rank activation matrices of untrained networks.

4.2.2 Feature extraction
Before computing our universality and brain-similarity metrics, we first needed to extract a set of feature activations
from each model layer. We sought to quantify these metrics for the features representations in each network rather than
for the spatial representations. We thus applied global max-pooling to remove spatial information from the activations
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of each model layer. For convolutional networks, pooling was applied across the height and width dimensions, and for
networks with patch embeddings, pooling was applied across patch dimensions. To extract all orthogonal dimensions
from each model layer, we first performed PCA on the activations to the 72,128 "unshared" images from NSD, retaining
all PCs up to the matrix rank, computed with the default procedure in torch.linalg.matrix_rank in PyTorch [23].
We then transformed the 872 "shared" images from NSD to the PC basis and computed universality and brain similarity
metrics for each PC.

4.3 Metrics

4.3.1 Universality
Our universality metric estimates the degree to which a representational dimension is shared across multiple DNNs. For
a given dimension in a target network, we used cross-validated ridge regression to predict its activations as a linear
combination of the activations from another predictor network. We performed this analysis using the same "shared"
NSD images that were used to compute brain similarity (described in 4.3.2). The regressors consisted of activations
concatenated across all sampled layers of the predictor network. The procedure for cross-validated ridge regression is
described in 4.3.3. We computed the mean Pearson correlation between the predicted and actual responses of the target
dimension across all cross-validation folds, and we repeated this process, using every network other than the target as
the predictor. We then obtained the universality score by taking the median correlation across all predictor networks.
We used median instead of mean to ensure that the final summary statistic was not driven by a small subset of predictor
networks with exceptionally high or low scores. This entire procedure was repeated to obtain universality scores for all
dimension in all sampled layers of the target network, and it was then repeated with each network as the target.

4.3.2 Brain similarity
Our brain similarity metric estimates the degree to which a dimension in a DNN can be predicted from fMRI responses
measured in human visual cortex. Given a target dimension from a network, we used cross-validated ridge regression to
predict its activations as a linear combination of the trial-averaged fMRI responses to the "shared" images in a single
subject. We computed the mean Pearson correlation between the predicted and actual responses of the target dimension
across all cross-validation folds, and we repeated this procedure for all fMRI subjects. Brain similarity is defined as the
mean score across all subjects.

4.3.3 Cross-validated ridge regression
We computed universality and brain similarity scores using ridge regression with a nested cross-validation design. The
outer loop of this cross-validation design had five folds. We fit the parameters of the ridge regression on four folds of
training data. We first selected the optimal ridge penalty for each target dimension from values with equal logarithmic
spacing between 10−3 to 104. The optimal ridge penalty was the one that yielded that best performance when applying
leave-one-out cross-validation to the training data. We then fit the regression weights using the full set of training
data and the optimal ridge penalty, and we applied these regression weights to generate predicted responses in the
held-out fold of test data. Performance was evaluated as the correlation between the predicted and actual responses on
the held-out test data. This procedure was repeated using all five folds as held-out test data, and the performance scores
were average across folds.

4.3.4 Representational similarity analysis
We computed conventional representational similarity analysis (RSA) scores for comparisons of networks and visual
cortex [16], adapting the procedure described in [5]. We split the 872 "shared" images into a training set and a test set
of 436 images each. In each set, representational dissimilarity matrices (RDMs) were created by calculating Pearson
correlation distances for pairwise comparisons of image representations within each network layer and each fMRI
subject. For each network layer, we computed RDMs using the same globally pooled channel activations that were used
to compute universality and brain similarity scores. RSA scores were obtained by calculating the Spearman correlation
between the RDMs for a network layer and an fMRI subject, and these scores were averaged across subjects. For each
network, the best-performing layer was selected based on the RSA scores in the training set, and a final RSA score
was computed for each network using the selected layer in the held-out test set. We next examined the contribution
of universal dimensions to the RSA scores by reducing each network to the subspace spanned by its top ten or five
universal dimensions. Specifically, we reconstructed the test-set activations of each network using only the top ten or
five most universal dimensions, and we re-computed the final RSA score on these reconstructed test data.

5 Data availability

The Natural Scenes Dataset is available at https://naturalscenesdataset.org/ [1].
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6 Code availability
Code for all analyses in this study is available at https://github.com/zche377/universal_dimensions.
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8 Supplementary material

Figure S1: Universality and brain similarity for individual networks. These plots show the universality and brain
similarity scores for individual networks. Four sets of deep neural networks were examined, including three sets of
trained networks with varied initializations, architectures, and tasks and one set of untrained networks. The analyses
are the same as in Figure 3, but here the results are plotted as the average values for individual networks. Average
universality and brain similarity scores were computed for equally sized quantiles of 100 dimensions along the x-axis
for each network. As in Figure 3, these plots show that a highly consistent trend is observed across all networks and
that universal dimensions are not restricted to a subset of networks.
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Figure S2: Universality and brain similarity of network dimensions in individual subjects. These plots show the
relationship between universality and brain similarity in each subject from the fMRI dataset. The analyses are the
same in Figure 2 but without averaging the brain similarity scores across subjects. As in Figure 2, these plots show the
density of dimensions on a logarithmic scale computed using kernel density estimation. The orange dots show the mean
universality and brain similarity scores for equally sized quantiles of 100 dimensions along the x-axis. These results
demonstrate that the relationship between universality and brain similarity is highly consistent and robustly detected in
all individual subjects.
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Figure S3: Universality and brain similarity for multiple regions of interest in visual cortex. These plots show the
universality and brain similarity scores for three regions of interest: the ventral, parietal, and lateral streams. These
regions are based on the “streams” masks as defined by the authors of the Natural Scenes Dataset study [1]. The analysis
is the same as in Figure 2, but here brain similarity scores are computed using the three stream regions rather than the
large nsdgeneral region from our main analyses. To visualize the results for all three regions in a single plot, the
contours of the kernel density estimate plots are displayed here, rather than their density values. Average universality
and brain similarity scores were computed for equally sized quantiles of 100 dimensions along the x-axis for each
region. These plots show that a highly consistent trend is observed across all regions.
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Figure S4: Universality and brain similarity are not intrinsically correlated. Universality and brain similarity scores
were computed on simulated data to demonstrate that these metrics are not intrinsically correlated and can be trivially
dissociated from one another. Data were generated for 20 simulated “subjects” and “networks.” All subjects and a
single network were created from a common matrix of orthonormal random variables with added Gaussian noise. The
remaining networks were created from another matrix of orthonormal random variables with added Gaussian noise.
These simulated data yield a subset of dimensions with low universality and high brain similarity and another set of
dimensions with high universality and low brain similarity. The plot limits for both axes are set to [-0.02, 1] to make the
data points near 0 visible.
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Figure S5: Two-dimensional visualization of model-specific representations. Image activations for the 100 least
universal dimensions from a high-level network layer were embedded in two dimensions using uniform manifold
approximation and projection. Specifically, image activations were obtained for the 100 dimensions with the lowest
universality scores in the penultimate layer from the set of ResNet-50 models trained on different tasks. In contrast to
the universal dimensions visualized in Figure 4, this plot shows no clear semantic organization.
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Figure S6: Two-dimensional visualization of untrained models. Image activations for the 100 most universal
dimensions of untrained networks were embedded in two dimensions using uniform manifold approximation and
projection. Specifically, image activations were obtained for the top 100 dimensions with the highest universality scores
in the penultimate layer from the set of untrained ResNet-18 models with different random weights. In contrast to
the universal dimensions visualized in Figure 4, this plot shows no clear semantic organization. Instead, the universal
dimensions of untrained networks appear to emphasize low-level image properties, as demonstrated by the strong
luminance gradient from left to right in this plot.
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Figure S7: Universal dimensions underlie the results of representational similarity analyses for individual
subjects. These plots show the results of representational similarity analyses (RSA) comparing networks with each
subject from the fMRI dataset. The analyses are the same as in Figure 5 but without averaging the RSA scores across
subjects. As in Figure 5, each dot is a network, whose representations were either intact or reduced to subspaces of their
top ten or five universal dimensions, and the violin plots show distributions of RSA scores across networks. These results
demonstrate that the subspaces of universal dimensions within each network consistently drive the representational
similarity between neural networks and visual cortex across all individual subjects.
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Figure S8: Universal dimensions underlie the results of representational similarity analyses in multiple regions
of interest. These plots show the results of representational similarity analyses (RSA) comparing networks with the
fMRI responses from three regions of interest: the ventral, parietal , and lateral streams. These regions are based on the
“streams” masks as defined by the authors of the Natural Scenes Dataset study [1]. The analyses are the same as in
Figure 5, but here the representational dissimilarity matrices (RDM) for the fMRI data are computed using the three
stream regions rather than the large nsdgeneral region from our main analyses. As in Figure 5, each dot is a network,
whose representations were either intact or reduced to subspaces of their top ten or five universal dimensions, and the
violin plots show distributions of RSA scores across networks. These results demonstrate that the subspaces of universal
dimensions within each network consistently drive the representational similarity between neural networks and visual
cortex across all regions.
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Architecture Learning objective Architecture type Training data Source

ResNet18

Object classification

Convolutional

ImageNet

PyTorch

ResNet50 Convolutional

ResNeXT50_32x4d Convolutional

Wide_ResNet50_2 Convolutional

AlexNet Convolutional

VGG16 Convolutional

DenseNet121 Convolutional

SqueezeNet1_1 Convolutional

ShuffleNet_v2_x1_0 Convolutional

ConveNeXt_tiny Convolutional

Swin_t Transformer

MaxVit_t Transformer

Cait_xxs24_224 Transformer

Timm

Coat_lite_tiny Transformer

Deit_tiny_patch16_224 Transformer

Levit_128 Transformer

Mixer_b16_224 MLP-Mixer

ResMLP_12_224 MLP-Mixer

Dla34 Convolutional
Table S1: Networks from the set of trained models with varied architectures.

Architecture Learning objective Training setting Training data Source

ResNet50

Object classification Supervised

ImageNet

PyTorch

Jigsaw

Self-supervised VISSL

RotNet

ClusterFit

NPID++

PIRL

SimCLR

SwAV

DeepClusterV2
Table S2: Networks from the set of trained models with varied training objectives.
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